China OEM Q345 Low Carbon Steel Sheaves supplier

Product Description

Low carbon steel sheaves,
With high bearing capacity, high wear resistance and long service life
Sheave features:
1) Material: Q235B, Q345B, 35#, 45#, 60#, SSW-QR1, S45C
2) Groove surface quench: HRC45-55
3) Groove surface quench depth: 2mm-2.5mm
4) groove MT after heat treatment and welding line UT and MT
4) Max processing diameter: 2, 000mm
5) Short production cycle
It is used for crane equipment, port equipment, oil drilling rig and so on.
 

Code Wire rope diameter(mm) Main dimension(mm)  D
Groove diameter Outside diameter R Groove Width Shaft diameter Bearing hole width
BX1321 10-14 450 495 7 37 55 70
BX2321 >14-19 560 620 10 50 80 86
BX3321 >19-23.5 710 781 12 60 95 106
BX4321 >23.5-30 900 990 15 73 130 122
BX5321 >23.5-30 1120 1232 19 92 160 142
BX6321 >30-37 1250 1376 22 104 160 142
BX7321 >43-50 1600 1752 26 123 190 182
BX8321 >50-58 1800 1972 29 135 190 182

 

 
 
Services:
Best Services For You
 
1) We can provide OEM service and design for you
2) We can pack the goods according to your requirement
3) We test the quality of all products before delivery
4) We guarantee our reply in 24 hours of working day
5) We can communicate with you in different languages
6) High quality, best price, punctual shipment, good after-sale service will be guaranteed.
 
FAQ:
Q: What information should I provide if I want to order the products?
1) Product information: Quantity, specification
2) Delivery time required.
3) Shipping information: Company name, address, phone number, destination seaport/air port.
4) Forwarder’s contact details if there is any in China.
 
Q: How about your payment terms?
A: 30% -50%deposit, with the balance before delivery, we accept T/T and L/C at sight.
 
Q: Can I use our own logo?
A: Yes, we can produce by using your own logo if you need.
 
Q: How about sample & MOQ policy?
A: Welcome sample order. MOQ can be 1 set.
 
Q: What is your lead time for your goods?
A: Normally 30 days after confirmed order,  
 

Application: Double Beam Crane, Gantry Crane, Bridge Crane, Tower Crane, Single Grinder Crane, Lifting Platform, Small Crane
Type: Electric Hoist
Sling Type: Wire Rope
Certification: ISO9001:2000
Pulley: Lifting Equipment
Sheave: Goods Crane
Customization:
Available

|

Customized Request

rope pulley

What impact does rope pulley design have on load-bearing capacity and overall performance?

The design of a rope pulley has a significant impact on its load-bearing capacity and overall performance. Here’s a detailed explanation:

Groove Shape:

The shape of the groove in a rope pulley affects its load-bearing capacity and performance:

1. V-Shaped Groove: A V-shaped groove design is commonly used in pulleys. It provides better engagement with the rope, allowing for increased load-bearing capacity. The V-shape helps prevent the rope from slipping out of the groove and improves the pulley’s ability to distribute the load evenly.

2. U-Shaped Groove: U-shaped grooves are also utilized in certain pulley designs. While they may not offer the same level of load-bearing capacity as V-shaped grooves, they provide a smoother surface for the rope to run on. U-shaped grooves are often used in applications where minimizing rope wear and friction is a priority.

3. Flat or Round Groove: Some pulleys have flat or round grooves. These designs are typically used in low-load applications where rope wear and friction are not significant concerns. Flat or round grooves may be found in pulleys used for light-duty tasks or in situations where the primary focus is redirecting the rope rather than maximizing load-bearing capacity.

Material:

The choice of material for the pulley affects its load-bearing capacity, durability, and overall performance:

1. Metal: Metal pulleys, such as those made from aluminum or steel, are known for their strength and high load-bearing capacity. They are commonly used in heavy-duty applications where substantial loads are involved. Metal pulleys provide durability and resistance to wear, making them suitable for demanding environments.

2. Plastic: Plastic pulleys are lightweight, cost-effective, and suitable for lighter loads or non-industrial applications. They may be used in residential settings, recreational activities, or situations where weight reduction is a priority. Plastic pulleys can offer smooth operation and are less likely to cause damage to ropes or cables.

3. Composite: Composite pulleys are constructed using a combination of materials, such as fiberglass or carbon fiber reinforced with polymers. These pulleys provide a balance between strength, weight reduction, and resistance to corrosion. Composite pulleys are often utilized in outdoor and marine applications where exposure to moisture or harsh environments is a concern.

Bearing Type:

The bearing type used in a rope pulley impacts its overall performance:

1. Bushings: Pulleys with bushings are cost-effective and suitable for light to moderate loads. Bushings provide a friction interface between the pulley and the axle, allowing for smooth rotation. However, they may require periodic lubrication to maintain optimal performance.

2. Ball Bearings: Pulleys equipped with ball bearings offer superior performance, especially in high-load or high-speed applications. The ball bearings reduce friction and enable the pulley to rotate smoothly. Ball-bearing pulleys are commonly used in industrial settings, where efficiency and reliability are paramount.

3. Roller Bearings: Roller bearings provide enhanced load-bearing capacity and durability compared to bushings or ball bearings. They can handle heavy loads and are often used in demanding industrial applications.

The design of a rope pulley, including the groove shape, material choice, and bearing type, directly influences its load-bearing capacity and overall performance. Selecting the appropriate pulley design based on the specific application requirements is crucial for ensuring safe and efficient operation.

Additionally, it’s important to follow manufacturer guidelines and industry standards when selecting and using rope pulleys to ensure compatibility, safety, and optimal performance.

rope pulley

How do advancements in material technology influence the design of modern rope pulleys?

Advancements in material technology have a significant impact on the design of modern rope pulleys. Here’s a detailed explanation:

1. Lightweight and High-Strength Materials: The development of lightweight and high-strength materials, such as advanced polymers, composites, and alloys, has revolutionized the design of rope pulleys. These materials offer superior strength-to-weight ratios compared to traditional materials like steel. As a result, modern pulleys can be designed with reduced weight while maintaining or even enhancing their load-bearing capacity.

2. Corrosion Resistance: Some industries operate in corrosive environments, such as marine or chemical industries. Advancements in material technology have led to the development of corrosion-resistant materials that can withstand exposure to harsh chemicals, saltwater, and other corrosive agents. Pulleys made from these materials maintain their performance and integrity over extended periods, reducing maintenance requirements and increasing their lifespan.

3. Wear Resistance: Modern materials with improved wear resistance properties contribute to the longevity and durability of rope pulleys. These materials can withstand friction, abrasion, and repetitive motion without significant wear or degradation. This results in reduced maintenance and replacement costs, making them more cost-effective for industrial applications.

4. Self-Lubricating Properties: Some advanced materials possess self-lubricating properties, reducing the need for external lubrication in rope pulley systems. These materials have low friction coefficients and can self-lubricate during operation, minimizing wear on the pulley and the rope. Self-lubricating pulleys offer advantages such as reduced maintenance, improved efficiency, and cleaner operation.

5. Temperature Resistance: Industries that operate in extreme temperature conditions, such as aerospace or oil and gas, require rope pulleys that can withstand high or low temperatures. Modern materials have been developed to exhibit excellent temperature resistance, allowing pulleys to maintain their performance and structural integrity under extreme temperature variations.

6. Design Flexibility: Advancements in material technology have increased the design flexibility of modern rope pulleys. These materials can be molded, extruded, or formed into complex shapes, allowing for customized designs to meet specific application requirements. Designers have the freedom to optimize pulley shapes, groove designs, and other features to enhance performance, efficiency, and load-bearing capabilities.

7. Enhanced Safety Features: Some modern materials incorporate safety features into the design of rope pulleys. For example, materials with high impact resistance can help prevent accidents and minimize the risk of pulley failure. Additionally, materials with inherent flame retardant properties can improve safety in industries where fire hazards are a concern.

Advancements in material technology continue to drive innovation in the design of modern rope pulleys. By leveraging the properties of new materials, engineers can create pulleys that are lighter, stronger, more durable, corrosion-resistant, and tailored to specific industrial needs. These advancements contribute to improved performance, efficiency, and safety in various applications where rope pulleys are utilized.

rope pulley

How do rope pulleys assist in lifting and moving heavy loads?

Rope pulleys play a crucial role in lifting and moving heavy loads by providing mechanical advantage and facilitating the transfer of force. Here’s a detailed explanation of how rope pulleys assist in these tasks:

1. Mechanical Advantage: Rope pulleys are designed to increase the mechanical advantage in lifting and moving operations. They achieve this by redirecting the force applied to the rope, making it easier to lift or move heavy loads. The mechanical advantage obtained depends on the configuration of the pulley system used.

2. Change in Direction: Rope pulleys change the direction of the force applied to the rope. By redirecting the force, they enable lifting and moving loads in a controlled manner. For example, a pulley system can change the direction of the force from a vertical pull to a horizontal pull, allowing for the movement of loads along different paths.

3. Load Distribution: Rope pulleys distribute the load across multiple ropes or cables. By using multiple pulleys in a system, the load can be divided among the ropes, reducing the strain on each individual rope. This load distribution helps prevent overload and promotes safer lifting and moving operations.

4. Increased Efficiency: Rope pulleys enhance the efficiency of lifting and moving heavy loads. By reducing the effort required to lift the load, they allow operators to exert less force while achieving the desired movement. This increased efficiency translates to improved productivity and reduced physical strain on the operators.

5. Versatility and Flexibility: Rope pulley systems offer versatility and flexibility in lifting and moving applications. They can be easily adapted to different load sizes and weights by adjusting the number and arrangement of pulleys. This adaptability enables efficient handling of a wide range of loads in various industries and settings.

Overall, rope pulleys provide mechanical advantage, change the direction of force, distribute loads, increase efficiency, and offer versatility in lifting and moving heavy loads. Their use in various industries and applications significantly improves productivity, safety, and operational effectiveness.

China OEM Q345 Low Carbon Steel Sheaves   supplier China OEM Q345 Low Carbon Steel Sheaves   supplier
editor by CX