China factory Large Cast Steel Rope Sheave with Groove Hardening pulley system

Product Description

Product Parameters

Material:VLC620AW

Material C Si Mn P S Cr Mo Ni Cu V
As Required ≤0.25 ≤0.60 0.50-1.70 ≤0.030 ≤0.030 ≥0.40 ≥0.15 ≥0.40 ≤0.30 ≤0.12
Actual 0.21 0.47 0.91 0.018 0.012 0.63 0.21 0.73 0.05 0.006

 

Mechanical Property Tensile Test Impact Test
As Rquired Yield Tensile Strength Elongation Recution of Area Akv,-20° ≥42J
≥430 ≥620 ≥16 ≥30 1 2 3 Average
Actual 600 740 20 51 79 57 72 69

  
It is up to customers’ requirement.
 

Item Standard
Casting Material EN 15713/EN 10571/BS 3100/DIN 1681/DIN17205
Casting Tolerance in Blank ISO 8062 CT 13
Size Tolerance DIN ISO 2768m
NDT ASTM A609 Level 2 or 3 /EN 12680/ASTM E94 Level 2 or 3
Heat Treatment Normalizing+Tempering+Quenching
Hardness As Required

Company Profile

Haian CHINAMFG Casting Co.,Ltd. is established in 2003 in CHINAMFG Town.

In 2007,we moved our factory to Sunzhuang town and now we can supply bigger steel castings with max. weight 45 tons.

In 2011,we built a new sand mold maiking workshop with 120 tons refinining CHINAMFG and the max. weight can be 120 tons.

In 2013,we paid more attenion on the castings for shipbuilding and started to supply marine castings for most of domestic famous shipyards.

From 2013 to 2571,we bought more and more machines to strengthen our ability from rough machining to finished machining.

In 2571,we built another new sand mold making workshop for the quick development of market requirement.

Now we monthly supply 6000 tons different castings for different customers of different industry,such as cement mill,shipubuilding,petroleum machinery,rolling mill,forging press and so on.

 

Prdocution Process

1)Pattern making

We have our own wooden pattern making workshop.
But our company is always busy,
we also have around 10 sub-contractors for pattern making.
They help us for the pattern but will be inspected according to our rules.
We will record for every pattern inspection.

2)Sand core making

We have around 80 technicans for sand core making which is divided into around 10 teams.
Most of the technicans has more than 10 years’ experience.

Most of the sand core is made by silica sand with common sand inside of it.
The common sand will be used repeatly.
For some important position,such as R corner,we will use chorme ore sand.

The outside of the sand core,we will do the painting,burn and clean it.

We will assemble diffrent sand cores together and wait for pouring.

3)Melting and pouring

We always do the melting after mid-night for cheaper electric charge.
And we normally do pouring in the early morning.

No. Equipment Name Quantity(Set)
1 25 tons Electrical Arc Furnace 1
2 50 tons Intermediate Frequency Furnace 2
3 120 tons Refining Furnace 1
4 120 tons VD Furnace 2

4)Cooling
Chemical composition

When we do the pouring,we will also take the sample and check the chemical compositon.

After pouring,we will wait for different time for cooling according to casting’s weight.

Item Weight in blank(Metric Tons) Cooling Time(Hour)
1 <25 48
2 >25-40 72
3 >40-55 96
4 >55-72 120
5 >72-96 144
6 >96-115 168
7 >115 192

5)Heat treatment

The maximum size of the heat treatment CHINAMFG is 12m*9m*6m.
The size also decide the max. size we can make for the casting.

We only can do normalizing and tempering.
The quenching if needed will be done by our sub-contactor.

Cutting the riser,we choose thermal cutting method.

After heat treatment,we will do the mechanical property test.

6)Draw the line and do the first rough machining
We can do the machining from rough to finished machining.

7)NDT after rough machining
 

8)Welding repair
We have rich experience for making support rollers and kiln tyres,
then there is no welding for the outside working position.
This is our special technology.

Every year we supply around 400pcs kiln tyres,930pcs support roller,170 sets gear( in 2 halves).

But for some other castings,if we do the welding repair,
we will do the tempering for stress relief later.

All of our welders have the SGS certficate.
 

9)Final machining
We have a lot of vertical lathes from 2.5m to 10m.
 

 

Certifications

We get approval from CNAS for our laboratory.
We also have 9 class certificate,such as ABS,DNV,NK,RINA,KR,CCS,BV and so on.
 

Packaging & Shipping

We supply a lot of castings for cement mill,rolling mill,shipbuilding and so on.

We can do the packing according to our rules or according to customers’ requirement.

 

 

After Sales Service

Normally there is a 12 months quality warantty.

We do at least 3 times NDT:after rough,semi-finished and finished machining.

And also the customer will do the witness during or after finished machining.

If there is also any problem when you receive the castings,
please send us photos and detailed defects,
we will negotiate with you and make a compensation.

A third party inspection before shipment is welcomed.

 

 

 

 

 

Type: Chemical Hardening Sand
Casting Method: Directional Crystallization
Sand Core Type: Sodium Silicate Sand Core
Samples:
US$ 20/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

rope pulley

What impact does rope pulley design have on load-bearing capacity and overall performance?

The design of a rope pulley has a significant impact on its load-bearing capacity and overall performance. Here’s a detailed explanation:

Groove Shape:

The shape of the groove in a rope pulley affects its load-bearing capacity and performance:

1. V-Shaped Groove: A V-shaped groove design is commonly used in pulleys. It provides better engagement with the rope, allowing for increased load-bearing capacity. The V-shape helps prevent the rope from slipping out of the groove and improves the pulley’s ability to distribute the load evenly.

2. U-Shaped Groove: U-shaped grooves are also utilized in certain pulley designs. While they may not offer the same level of load-bearing capacity as V-shaped grooves, they provide a smoother surface for the rope to run on. U-shaped grooves are often used in applications where minimizing rope wear and friction is a priority.

3. Flat or Round Groove: Some pulleys have flat or round grooves. These designs are typically used in low-load applications where rope wear and friction are not significant concerns. Flat or round grooves may be found in pulleys used for light-duty tasks or in situations where the primary focus is redirecting the rope rather than maximizing load-bearing capacity.

Material:

The choice of material for the pulley affects its load-bearing capacity, durability, and overall performance:

1. Metal: Metal pulleys, such as those made from aluminum or steel, are known for their strength and high load-bearing capacity. They are commonly used in heavy-duty applications where substantial loads are involved. Metal pulleys provide durability and resistance to wear, making them suitable for demanding environments.

2. Plastic: Plastic pulleys are lightweight, cost-effective, and suitable for lighter loads or non-industrial applications. They may be used in residential settings, recreational activities, or situations where weight reduction is a priority. Plastic pulleys can offer smooth operation and are less likely to cause damage to ropes or cables.

3. Composite: Composite pulleys are constructed using a combination of materials, such as fiberglass or carbon fiber reinforced with polymers. These pulleys provide a balance between strength, weight reduction, and resistance to corrosion. Composite pulleys are often utilized in outdoor and marine applications where exposure to moisture or harsh environments is a concern.

Bearing Type:

The bearing type used in a rope pulley impacts its overall performance:

1. Bushings: Pulleys with bushings are cost-effective and suitable for light to moderate loads. Bushings provide a friction interface between the pulley and the axle, allowing for smooth rotation. However, they may require periodic lubrication to maintain optimal performance.

2. Ball Bearings: Pulleys equipped with ball bearings offer superior performance, especially in high-load or high-speed applications. The ball bearings reduce friction and enable the pulley to rotate smoothly. Ball-bearing pulleys are commonly used in industrial settings, where efficiency and reliability are paramount.

3. Roller Bearings: Roller bearings provide enhanced load-bearing capacity and durability compared to bushings or ball bearings. They can handle heavy loads and are often used in demanding industrial applications.

The design of a rope pulley, including the groove shape, material choice, and bearing type, directly influences its load-bearing capacity and overall performance. Selecting the appropriate pulley design based on the specific application requirements is crucial for ensuring safe and efficient operation.

Additionally, it’s important to follow manufacturer guidelines and industry standards when selecting and using rope pulleys to ensure compatibility, safety, and optimal performance.

rope pulley

How do advancements in material technology influence the design of modern rope pulleys?

Advancements in material technology have a significant impact on the design of modern rope pulleys. Here’s a detailed explanation:

1. Lightweight and High-Strength Materials: The development of lightweight and high-strength materials, such as advanced polymers, composites, and alloys, has revolutionized the design of rope pulleys. These materials offer superior strength-to-weight ratios compared to traditional materials like steel. As a result, modern pulleys can be designed with reduced weight while maintaining or even enhancing their load-bearing capacity.

2. Corrosion Resistance: Some industries operate in corrosive environments, such as marine or chemical industries. Advancements in material technology have led to the development of corrosion-resistant materials that can withstand exposure to harsh chemicals, saltwater, and other corrosive agents. Pulleys made from these materials maintain their performance and integrity over extended periods, reducing maintenance requirements and increasing their lifespan.

3. Wear Resistance: Modern materials with improved wear resistance properties contribute to the longevity and durability of rope pulleys. These materials can withstand friction, abrasion, and repetitive motion without significant wear or degradation. This results in reduced maintenance and replacement costs, making them more cost-effective for industrial applications.

4. Self-Lubricating Properties: Some advanced materials possess self-lubricating properties, reducing the need for external lubrication in rope pulley systems. These materials have low friction coefficients and can self-lubricate during operation, minimizing wear on the pulley and the rope. Self-lubricating pulleys offer advantages such as reduced maintenance, improved efficiency, and cleaner operation.

5. Temperature Resistance: Industries that operate in extreme temperature conditions, such as aerospace or oil and gas, require rope pulleys that can withstand high or low temperatures. Modern materials have been developed to exhibit excellent temperature resistance, allowing pulleys to maintain their performance and structural integrity under extreme temperature variations.

6. Design Flexibility: Advancements in material technology have increased the design flexibility of modern rope pulleys. These materials can be molded, extruded, or formed into complex shapes, allowing for customized designs to meet specific application requirements. Designers have the freedom to optimize pulley shapes, groove designs, and other features to enhance performance, efficiency, and load-bearing capabilities.

7. Enhanced Safety Features: Some modern materials incorporate safety features into the design of rope pulleys. For example, materials with high impact resistance can help prevent accidents and minimize the risk of pulley failure. Additionally, materials with inherent flame retardant properties can improve safety in industries where fire hazards are a concern.

Advancements in material technology continue to drive innovation in the design of modern rope pulleys. By leveraging the properties of new materials, engineers can create pulleys that are lighter, stronger, more durable, corrosion-resistant, and tailored to specific industrial needs. These advancements contribute to improved performance, efficiency, and safety in various applications where rope pulleys are utilized.

rope pulley

In which industries are rope pulleys commonly employed?

Rope pulleys find extensive usage across various industries due to their versatility and ability to provide mechanical advantage. Here are some industries where rope pulleys are commonly employed:

  • Construction and Engineering: Rope pulleys are widely used in the construction and engineering industry. They assist in lifting and moving heavy building materials, operating cranes and hoists, and facilitating rigging operations. Rope pulleys are essential in tasks such as erecting structures, positioning equipment, and transporting materials on construction sites.
  • Manufacturing and Warehousing: In manufacturing facilities and warehouses, rope pulleys play a crucial role in material handling, assembly line operations, and conveyor systems. They are used to guide and redirect belts or ropes, facilitating the movement and transport of goods. Rope pulleys ensure efficient workflow and optimize productivity in these industries.
  • Maritime and Shipping: Rope pulleys are integral to the maritime and shipping industry. They are utilized in various applications onboard ships and boats, including sailing systems, winches, cranes, and rigging operations. Rope pulleys enable the adjustment of sails, lifting heavy loads, and maneuvering equipment and rigging on vessels.
  • Outdoor Recreation and Adventure: Rope pulleys play a significant role in outdoor recreational activities such as rock climbing, mountaineering, zip-lining, and rope courses. They are used in pulley systems to provide mechanical advantage, facilitate controlled movement, and ensure safety during these adventure sports.
  • Rescue and Emergency Services: Rope pulleys are essential in rescue and emergency services. They are employed in scenarios such as mountain rescue, confined space rescue, and swiftwater rescue. Rope pulleys enable controlled lowering or raising of personnel and equipment, ensuring safe and efficient extraction in critical situations.
  • Agriculture and Forestry: In the agriculture and forestry sectors, rope pulleys are used for various tasks such as lifting heavy loads, handling equipment, and facilitating forestry operations. They assist in tasks like tree felling, log skidding, and material transport, contributing to the efficiency and productivity of these industries.

These are just a few examples of the industries where rope pulleys are commonly employed. Their versatile nature and ability to enhance mechanical advantage make them valuable tools in a wide range of applications. The specific industry and application requirements dictate the selection of appropriate rope pulleys to optimize performance, efficiency, and safety.

China factory Large Cast Steel Rope Sheave with Groove Hardening   pulley system	China factory Large Cast Steel Rope Sheave with Groove Hardening   pulley system
editor by CX